粉嫩av一区二区老牛影视-亚洲久久美女视频-九九99久久久久久-麻豆在线视频免费观看-久久国产v一级毛多内射禁果a-av在线中文字幕观看-99人妻人人妻-91精品麻豆国产自产在线-亚洲欧美熟女另类,精品91久久久久a,精品久久久久乱色熟女影视,欧美日韩激情视频一区二区三区

技術(shù)文章

Technical articles

當(dāng)前位置:首頁(yè)技術(shù)文章Gamry電化學(xué)工作站:傳輸線模型

Gamry電化學(xué)工作站:傳輸線模型

更新時(shí)間:2017-08-04點(diǎn)擊次數(shù):4383

Purpose of This Note

This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission lines for modeling porous electrodes in Electrochemical Impedance Spectroscopy (EIS) and describes different kinds of  models.

Several practical examples of different electrochemical energy storage and generation devices give suggestions how to evaluate such EIS spectra with Gamry’s Echem Analyst.

Introduction

The classical electrochemical interface can be described by a plane electron-conducting electrode and an

ion-conducting electrolyte. Electrochemical reactions occur on the surface of the  electrode.

The electrochemical behavior of this interface can be described by different models. One of the simplest and most common models is the so-called Randles model shown in Figure 1.

Figure 1 – Diagram of a simplified Randles model describing the electrochemical interface on plane  electrodes.

The “equivalent series resistance” (ESR) represents the sum of resistances from the electrode, electrolyte, and electrical contacts. It is in series to a parallel connection  of charge-transfer resistance Rct and double layer capacitance Cdl.

Rct represents all Faradaic reactions that occur on the electrode’s surface. These reactions can be reversible and irreversible. In contrast, Cdl describes non-Faradaic charge storage mechanisms. It is often replaced by a “constant phase element” for non-ideal  assumptions.

This model is good for approximations and for describing electrochemical interfaces of plane electrodes. But it poorly describes the effect of porous electrodes that are used in most electrochemical  cells.

Porous Electrodes

To increase performance, energy storage and generation devices such as electrochemical capacitors (ECs), fuel cells, or dye-sensitized solar cells (DSCs) use highly  porous electrodes. These electrodes exhibit a very high surface compared to volume or weight.   For example,  ECs can have specific electrode surfaces of 1000 m2/g   and more.

Electrodes that are using highly porous materials can be differentiated into two parts – the base electrode and   the porous electrode. The base electrode is generally an insulated and inactive metal foil where the active  material is fixed on.   Figure 2 shows a schematic  setup.

Figure 2 – Classification of regions for a porous electrode    interface.

Compared to plane electrodes (see Figure 1), reactions occur directly on the surface of the electrode.  In   contrast, the reaction velocity within the pore of porous electrodes is limited.  The access to the active interface  for ions is hindered due to the small inner volume of the pores. Hence electrochemical reactions gradually delay the farther ions penetrate into the pore. This step becomes the dominating part.

Due to these restrictions on the electrochemical reactivity, the porous electrode has to be divided into three regions. These interfaces are marked “A”, “B”, and “Active Interface” (see Figure  2).

Region “A” represents the interface between the outer surface of the porous electrode and the  electrolyte.

Region “B” describes interactions between electrolyte and base electrode.

The most reactive parts itself is within the pore. This region is called “Active Interface”. It describes the interactions between active material of the porous electrode and electrolyte.

To investigate all these phenomena, EIS is the most common technique in research. It allows stud一ng reaction mechanisms of electrochemical systems in a generally non-destructive way.

For better understanding, different fit models can be used to estimate electrode and electrolyte parameters. In the following sections, different models will be introduced and explained by means of measurements on real cells. To follow the content of this application note, basic knowledge of EIS and modeling equivalent circuits is assumed.

Transmission lines

The stepwise flux of ions within a pore can be described  by a so-called transmission line. Figure 3 shows a model  in its generic form.   The model consists of several   parallel and serially connected elements. It is used to describe the different regions shown in Figure  2.

Figure 3 – Scheme of a generic transmission line model.

L is the length of the transmission line or the depth of  the pore respectively. The two interfaces “A” and “B” are represented by impedances ZA(x = 0) on the outer surface of the pore and ZB(x = L) on the base electrode at the end of the pore. Along the pore, the transmission line is represented by repeating impedance  elements.

c1 is the impedance of the electrolyte within the pore. Note that this impedance is different to the bulk electrolyte resistance that is represented as part of the

ESR. c2 is the impedance of the porous electrode’s solid phase. Both parameters describe the ohmic drop between 0<x<L. z describes the impedance at the “Active Interface” region shown in Figure 2.

Juan Bisquert[1] calculated the impedance Z for a general transmission line model (see equation 1).This equation  is the basis for modeling transmission lines for EIS  spectra.  For his calculations he assumed that c1, c2,   and

z are independent on their position (0<x<L) within the pore. Hence they can be treated as homogenously distributed.

In practice, knowing the pore depth L allows to determine important parameters such as the conductivity and diffusion coefficients from the impedance fit results. However, this would go beyond the scope of this application note. Please see cited literature for detailed information.

Fitting transmission lines in the Echem Analyst

Gamry’s Echem Analyst contains several pre-built EIS models including different transmission line models that can be used instantly or  modified.

In addition, the model editor enables building own EIS models. A variety of most common elements can be interconnected to describe different electrochemical systems.

For adjusting and calculating model parameters, the Echem Analyst offers two different algorithms. A Simplex algorithm and a Levenberg-Marquardt algorithm calculate the impedance to find adequate fit-parameters.  First one also has an Auto-Fit  function

for easier finding start parameter. The latter one is faster but requires partial derivates of the impedance for each parameter.

The next sections describe all pre-built transmission line models in the Echem  Analyst.

“Unified” model

The “Unified” model can be used for testing different boundary conditions and limitations regarding the electrode. Limiting cases of transmission lines can be easily achieved by adjusting appropriate elements to be zero or very large.

The transmission line model “Unified” is shown in Figure 4. In addition, a resistor (not shown) is in series  to the model.  It represents the  ESR.

This model uses only the Simplex algorithm as its derivates would be computational and algebraic prohibitive to calculate. In total, eleven parameters can be  modified  and calculated.

Figure 4 – Scheme of the transmission line model “Unified”. For details, see text.

ZB and z are both represented as parallel combination of resistor and constant phase element. The resistor describes charge-transfer reactions at the interface. The constant phase element summarizes all polarization effects. In an ideal case, it can be treated as   capacitor.

However, a constant phase element addresses also non-ideal capacitances resulting from inhomogeneities of porous electrodes.

All other components in the “Unified” model – ZA, c1, and c2 – are represented by simple  resistors.

“Bisquert Open” and “Bisquert Short”

Figure 5 shows two transmission line models which describe limiting cases of the general transmission  line 

model. Both were originally developed by Bisquert[2] to describe diffusion and recombination  processes.

Model a) is called “Bisquert Open” (BTO) and  b) is called “Bisquert Short” (BTS).  In the Analyst, an additional resistor is in series to the model. It represents the ESR and is not shown in Figure 5.

Figure 5 – Two specific cases of transmission line models.

In both models it is assumed that the conductivity of one resistive trail is much larger than the other one. Hence the impedance of the electrode’s solid phase c2 can be set to zero. Only the electrolyte resistance rm within the pore is considered.

Similar to the “Unified” model, impedance z of the active interface is a parallel circuit of resistor and constant phase element. Both represent Faradaic and capacitive  non-Faradaic  reactions respectively.

Impedance ZA is set to infinite (open circuited). This means in practice that electrochemical reactions do not occur on the surface of the porous electrode. Only reactions within the pore are going to be considered. ZA can be compley neglected at the fitting  process.

The difference in both models is impedance ZB. At the “Bisquert Open” model, ZB is also set to infinite. The system is defined by “reflecting boundary conditions”. This means that the base electrode is compley insulating and no reactions (Faradaic or non-Faradaic) occur on its surface.

In contrast, ZB is zero for the “Bisquert Short” model.This system is defined by “absorbing boundary  conditions”. Hence the substrate’s surface is not entirely insulated and also interacts with the electrolyte. This would short-circuit the porous  film.

Bisquert[2] calculated for both models the total impedance. The results are shown in Equation 2 and 3.

Applications

Electrochemical systems can be very  different.

Electrochemical capacitors base on highly  reversible

non-Faradaic charge separation mechanisms while DSCs base on reversible redox reactions.

In addition, if limitations of electrochemical systems are exceeded, underl一ng electrochemical mechanisms can change drastically.   Non-reversible Faradaic reactions can occur which can lead to severe damages of the    cell.

The next sections apply the prior discussed about transmission lines on practical  examples.

Electrochemical  capacitors

High-power electrochemical capacitors are developed for a number of applications. These include uninterruptible power supplies, lasers, and power electronics for electric and hybrid vehicles among others. They provide a very high capacitance in a relatively small volume and  weight.

Figure 6 shows the Bode diagram of a potentiostatic EIS test on a 5 F electric double layer capacitor (EDLC) from Nesscap.A DC voltage of 0 V with an AC voltage of

1 mVrms were applied to the capacitor. The frequency range varied from 100 kHz to 5 mHz.

Figure 6 – Bode diagram of a potentiostatic EIS test on a 5 F EDLC ().  () R-CPE model, () modified “Bisquert Open” model. (•) magnitude, (+) phase.  For details, see text.

In addition, two different fits of models are shown – a R-CPE model (red curve) and a modified “Bisquert Open” model (green curve). An additional inductance (L1) was added to both models and is in series to the ESR. A detailed setup is shown in Figure 7.

 

Figure 7 – Two models that are used to fit the capacitor data that are shown in Figure 6. (a) R-CPE model, (b) modified “Bisquert Open” model.

Model a) is an extended version of a Randles model shown in Figure 1. The double layer capacitance is replaced by a constant phase element Qp to simulate non-ideal electrode behaviors. Model b) is a modified “Bisquert Open” model.

The very simple R-CPE model (red curve) shows only very poor agreement with the EIS spectrum of Figure 6. Especially at frequencies above 1 Hz, the fit starts to differ from the measured spectrum. In this region the transition from resistive to capacitive behavior occurs. The phase angle changes from nearly 0? to -90?.  At very high frequencies, inductance is the dominating part showing a positive phase angle.

In contrast, the modified “Bisquert Open” model (green curve) overlaps nearly perfect with the capacitor’s spectrum in all frequency regions.  It models very well the incremental decrease of the impedance and increase of the phase angle at frequencies above 1 Hz.

Table 1 lists up fit-parameters for the modified “Bisquert Open” model. The pore depth L and resistance rk are locked. Both columns are highlighted in gray. As no Faradaic reactions are expected on the active interface  of the EDLC, rk was set to a very high   value.

Dye-sensitized solar cells

Dye-Sensitized solar cells are another application where transmission line models are regularly employed. DSCs are solar cells that utilize organic or organometallic dye molecules. They are adsorbed on mesoporous TiO2 to absorb light efficiently. Excited electrons are then extracted out through the  TiO2.

Figure 8 shows an impedance spectrum of a DSC using porous TiO2 and a liquid electrolyte. It was recorded in potentiostatic EIS mode with zero DC voltage and an AC voltage of 10 mVrms. The frequency range ranged between 10 kHz and 70  mHz
.

 

Figure 8 – Nyquist diagram of a potentiostatic EIS test on a DSC (). () “Bisquert Open” model.For details, see text.

The Nyquist plot shows at higher frequencies a characteristic linear shape in the Nyquist diagram with a slope of about -1. This region – up to about 10 Hz – represents the transmission line. At lower frequencies  the curve has the shape of a half circle representing Faradaic reactions on the electrodes  surface.

The spectrum was modeled using a “Bisquert Open” model with an ESR in series. It fits nearly perfect over the entire frequency range. The fit results are summarized in Table 2. The pore depth L was again locked.

Note that in contrast to EDLCs (see prior section), resistance rk is now much smaller due to Faradaic reactions occurring on the active material. The constant phase element (Ym, a) which represents the capacitance of the system is much smaller compared to the EDLC.

In certain types of DSCs, organic hole conductors are used instead of a liquid electrolyte. Region “B”, the interface between ionic conductor and base electrode,is no more compley insulating and reactions can occur.

Fabregat-Santiago et al.[4] developed a model to fit this type of DSCs.The basic model is shown in Figure 9.

Figure 9 – Scheme of a transmission line model to describe TiO2/organic hole conductor DSCs. For details, see text.

The “Unified” model enables the possibility to adjust appropriate parameters and to model different cell conditions. Single parameters can be individually adapted.

In this particular case, the impedance on the outer surface of the electrode’s pore is open circuited. This can be simulated with a very high value for RA. The impedance of the conducting electrode material is neglected and can be set to zero (r2 =  0).

Computational simulations of Nyquist plots for this type of DSCs are shown in Figure 10.  It shows different  spectra for increasing reaction resistances RB on the base electrode/electrolyte interface.

Figure 10 – a) Simulated data for the circuit depicted in Figure 9 with different reaction resistances RB.  b) Segment of the spectra.

(Q) RB = 0.1 ?, (6) RB = 1 ?, (□) RB = 10 ?, (O) RB = 100 ?. For details, see text.

The spectrum of this specific case looks similar to the Nyquist plot in Figure 8. With increasing reaction resistance RB the width of the half circle is  increasing.

However, the underl一ng reaction mechanism is different as the base electrode is not compley insulating (“reflecting boundary conditions”).

Electrochemical reactions (Faradaic and non-Faradaic) can occur on the base electrode.

Table 3 lists up all parameters that were used to generate the spectra of Figure 10. RA, RB, r2, and the pore depth L were locked during fitting and are highlighted in gray.

Conclusion

Porous electrodes are regularly utilized for applications where high surface areas are beneficial. Impedance spectroscopy on porous materials regularly results in  data that can not be modeled with standard circuit components. Hence transmission lines are required due  to the distributed nature of the interfacial impedance throughout the pore.

Theories of different models that are used in literature and included in Gamry’s Echem Analyst are discussed.   By means of examples on different energy storage and generation devices, utilization of the Echem Analyst and evaluation of transmission lines are shown.

Acknowledgements

We gratefully acknowledge the data and very useful comments from Prof. Juan Bisquert and Dr. Francisco Fabregat-Santiago in the process of writing this  paper.

Literature

[1] Bisquert, J., Phys. Chem. Chem. Phys., 2, pp. 4185-4192, 2000.

[2] Bisquert, J., J. Phys. Chem. B, 106,  pp. 325-333,    2002.

[3] Wang, Q.; Moser, J.-E.; Grätzel, M., J. Phys. Chem. B, 109, pp.  14945-19453, 2005.

[4] Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo,  G.; Hagfeldt, A., Sol. Ener. Mat. & Sol. Cells, 87, pp. 117-131, 2005.

Demystif一ng Transmission Lines: What are They? Why are They Useful? Rev. 2.0 10/20/2014 © Copyright 1990-2014 Gamry Instruments, Inc.

18禁精品久久久久-国产精品久久7777777蜜臀-人妻搞黄久久精品-日韩五六十路黄色录像 | 亚洲欧美日韩香蕉在线-精品视频三区在线观看-成人av在线播放麻豆-69精品人人人妻人 | 成人熟女丝袜在线av在线观看-91久久国产综合久久91猫猫-日韩手机在线第1页-97精品久久天干天天 | 国产av传媒中文字幕-国产一区二区三区官网-精品久久久久久中文字幕无碍-国产91精品久久久51www | 久久久久久九九九九九九九九-久久久亚洲天堂久久久-国产91品久久久久久久久-999久久久免费视频 | 精品日韩在线播放黄页视频-99久久热这里只有精品-99人人妻人人澡人人-精品视频久久99 | 精品人妻免费一区二区三区四区-中文字幕一区在线91-久久人人爽爽爽-天美麻豆成人av精品小说 | 久久精品色妇少妇人妻-伊人中文字幕熟女-欧亚蜜桃一区二区三区-欧美,日韩,在线视频一区二区三区 露脸内射60岁短丝袜老熟女呻吟-国产精品色在线网站-国产熟女一区二区三区十视频-91精品人妻中文字幕色 | 亚洲麻豆av在线-av熟女中文字幕一区二区-国产成人av网站在线观看-91人妻丰满熟妇区 | 99久久久国产精品免费动-91久久国产综合张津瑜-狠狠人妻久久久久久综合丁香-婷婷99视频全部在线 91精品人妻一区二区三区蜜桃视频-天堂av在线免费看-久久中文字幕淫片-国产精品久久久久久久777 亚洲欧洲综合懂色-青青草原综合久久伊人精品-人妻x人妻在线精品-亚洲精品午夜久久久久久久久久久 | 丁香综合五月久久-久久av婷婷深爱午夜国产-欧美 日韩午夜激情-久久人妻视频下载 | 国内66av福利在线-久久91超碰精品国产91久久久-精品性高潮久久久久久免费-久久久精品免费在线观看视频 | 精品午夜一区二区三区在-欧美老熟妇一区二区高清视频-在线 有码 中文-寂寞少妇白浆一区二区 | 欧美亚洲日本韩国一区-国产三级av在线免费观看-美女av在线免费观看网站-挤进警花两片粉嫩菊蕾蜜月av | 日日天天日天天谢天天日-91麻豆精品国产自产高清观看-农村妇女一区二区三区完整版未删减-超碰97大香蕉521 | 国产又粗又猛又爽又黄免费观看-日韩一卡二卡三卡高清-欧美日韩一级片国产-91国产精品综合久久 | 99久久精品国产嫩-日韩人妻在线免费视频-色婷婷亚洲六月婷婷中文字幕-中文av字幕在线免费观看 | 美女内射久久久久-1区2区免费观看视频-国产成人av一区二区三区不-少妇熟女一区二区高清 | 国产又大又黄又色的视频-日本在线中文字幕在线-国产亚洲精品嫩草-久久传媒av性色av人人爽网站 | 久久综合色美女超色网站-日韩一级av在线免费观看-欧美日韩三级视频在线观看-狠狠综合久久av一区二区三区 | 99国内精品久久久久久久影视-亚洲视频久久五月-久久亚洲在线播放-久久久久久精品国产 | 天天爽天天日天天舔-9999精品久久久久-精品视频,一区二区在线观看-亚洲午夜激情视频在线播放 | 亚洲人妻丝袜女老师中文字幕-国产亚洲精品熟女国产成人-亚洲情 中文字幕-日韩乱码中文字幕在线 | 五月色丁香婷婷基地-成人综合亚洲swag-午夜美女视频一区二区三区-久久久精品在线免费观看视频 | 日韩中文字幕天堂网-国产精品高潮粉嫩av-超碰牛牛在线观看-久久人妻中国字幕av | 国产成人精品日本亚洲91桃色-欧美高清中文字幕人妻在线-日韩成人福利在线-91精品久久在线视频 | 婷婷伊人五月天色-六月丁香久久网-超碰人人爱夜夜操-不卡视频二区三区 | 婷婷欧美老熟妇-乱色老熟妇一区区三区-日韩高清在线不卡av-蜜桃免费观看视频一区二区三区 | 精品av一区二区三区-91精品国产综合久久久久久久久久-久久久久国产精品人妻aⅴ麻色戒-国产av精品久久免费 | 国产一区二区老熟妇露脸-亚洲日本激情激情-国产久久精品久久久-欧美丰满少妇高潮18p | 久久久久久久iv蜜桃视频-日韩av有码片-日韩欧美中文字幕资源-亚洲高清在线中文字幕 | 成人国产欧美日韩在线-青青久久在线视频-天天操天天干天天干天天操-天天插,天天干,天天 | 日韩性生活一级-免费中文字幕在线视频-久激情内射婷内射-亚洲五月婷婷综合网 | 中文字幕在线福利视频-色婷婷婷婷婷婷婷婷婷婷婷婷-国产精品高潮呻吟久久av码-中文字幕日韩黄 | 国产又粗又猛又爽又黄.视频-国产麻豆精品在线观看的-久久婷婷 免费-国模精品丰满熟女一区二区三区蜜桃 | 91精品国产九色综合久久香蕉-久久女人精品天堂av-久久热在线这里只有精品-国产超级精品色婷婷 | 久久草手机视频在线观看-国产老肥熟一区二区三区-色婷婷国产精品久久包臀-欧美精品麻豆. | 久久偷拍精品女人小便-久久久久狠婷婷-成人熟女免费视频-麻豆精品乱码www久久密 | 粉嫩久久久久久极品-亚洲中文字幕精品高清-91色综合久久不8-9999久久精品国产 | 久久精品熟女亚洲av-国产精品99久久久久成人-国产乱人av一区二区三区四区-中文人妻熟妇乱草草 | 欧美日韩国产图片一区-国产精品久久久久久久裸模-男人的天堂av高清-亚洲欧美日韩国产另类专区 |